Neural enquirer: learning to query tables in natural language

نویسندگان

  • Zhengdong Lu
  • Hang Li
  • Ben Kao
چکیده

We propose NEURAL ENQUIRER — a neural network architecture for answering natural language (NL) questions based on a knowledge base (KB) table. Unlike existing work on end-to-end training of semantic parsers [Pasupat and Liang, 2015; Neelakantan et al., 2015], NEURAL ENQUIRER is fully “neuralized”: it finds distributed representations of queries and KB tables, and executes queries through a series of neural network components called “executors”. Executors model query operations and compute intermediate execution results in the form of table annotations at different levels. NEURAL ENQUIRER can be trained with gradient descent, with which the representations of queries and the KB table are jointly optimized with the query execution logic. The training can be done in an end-to-end fashion, and it can also be carried out with stronger guidance, e.g., step-by-step supervision for complex queries. NEURAL ENQUIRER is one step towards building neural network systems that can understand natural language in real-world tasks. As a proof-of-concept, we conduct experiments on a synthetic QA task, and demonstrate that the model can learn to execute reasonably complex NL queries on small-scale KB tables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Language

We propose NEURAL ENQUIRER — a neural network architecture for answering natural language (NL) questions given a knowledge base (KB) table. Unlike previous work on end-to-end training of semantic parsers, NEURAL ENQUIRER is fully “neuralized”: it gives distributed representations of queries and KB tables, and executes queries through a series of differentiable operations. The model can be train...

متن کامل

Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning

Relational databases store a significant amount of the worlds data. However, accessing this data currently requires users to understand a query language such as SQL. We propose Seq2SQL, a deep neural network for translating natural language questions to corresponding SQL queries. Our model uses rewards from inthe-loop query execution over the database to learn a policy to generate the query, wh...

متن کامل

Seq2sql: Generating Structured Queries

Relational databases store a significant amount of the world’s knowledge. However, users are limited in their ability to access this knowledge due to a lack of understanding of query languages such as SQL. We propose Seq2SQL, a deep neural network for translating natural language questions to corresponding SQL queries. Our model leverages the structure of SQL queries to reduce the output space ...

متن کامل

انتخاب مناسب‌ترین زبان پرس‌وجو برای استفاده از فرا‌‌پیوندها جهت استخراج داده‌ها در حالت دیتالوگ در سامانه پایگاه داده استنتاجی DES

Deductive Database systems are designed based on a logical data model. Data (as opposed to Relational Databases Management System (RDBMS) in which data stored in tables) are saved as facts in a Deductive Database system. Datalog Educational System (DES) is a Deductive Database system that Datalog mode is the default mode in this system. It can extract data to use outer joins with three query la...

متن کامل

An Encoder-Decoder Framework Translating Natural Language to Database Queries

Machine translation is going through a radical revolution, driven by the explosive development of deep learning techniques using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). In this paper, we consider a special case in machine translation problems, targeting to translate natural language into Structural Query Language (SQL) for data retrieval over relational database. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Data Eng. Bull.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2016